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Systems correctness

Let S be a system and P a desired behavior (specification).

Two very important problems:

Model Checking: Is S correct w.r.t. P?

Satisfiability: Is P a correct specification?

To answer to these questions, formal methods are used.

S can be modelled by a labeled transition graph K (Kripke structure).

P can be expressed as a temporal logic formula ϕ.

Then,

Model Checking: K |= ϕ?

Satisfiability: Is there a K such that K |= ϕ?
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Systems specifications

Temporal logic: description of the temporal ordering of events!

Two main families of temporal logics:

Linear-Time Temporal Logics (LTL)
Each moment in time has a unique possible future.
Useful for hardware specification.

Branching-Time Temporal Logics (CTL, CTL*, and µ-CALCULUS)
Each moment in time may split into various possible future.
Useful for software specification.

The µ-CALCULUS subsumes many logics, in particular, LTL, CTL, and CTL*.

Several extension of µ-CALCULUS have been considered.

One among all: the GRADED µ-CALCULUS, i.e., the µ-CALCULUS extended
with graded modalities [“there are at least n successors such that...”].
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Computational complexity

M.C. Sat.

LTL PSPACE-COMPLETE PSPACE-COMPLETE

CTL PTIME-COMPLETE EXPTIME-COMPLETE

CTL* PSPACE-COMPLETE 2EXPTIME-COMPLETE

µ-CALCULUS UPTIME∩COUPTIME EXPTIME-COMPLETE

GRADED µ-CALCULUSab UPTIME∩COUPTIME EXPTIME-COMPLETE

Table: Computational complexity of Model Checking and Satisfiability.

a
O. Kupferman, U. Sattler, and M. Vardi. The Complexity of the GRADED µ-CALCULUS, CADE’02.

b
P. Bonatti, C. Lutz, A. Murano, and M. Vardi. The Complexity of Enriched µ-Calculi, ICALP’06 / LMCS’08.

µ-CALCULUS: very expressive but too low-level (hard to understand).

LTL, CTL, and CTL*: less expressive but much more human-friendly.
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Our motivation

A very challenging issue is to extend the expressiveness of classical temporal
logics to model more complex specifications, in a way that

there is no extra cost on determine its decision problems,

the resulting formal language is easy to use and understand.

A natural question: how could logics that allow to reasoning about path be
affected by considering graded modalities?
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Our proposal

We investigate the extension of CTL with graded modalities (GCTL, for short).

Possible applications/connetions:

XML query language;

cyclomatic complexity;

redundancy in a system.

There is a technical challenge involved with such an extension:

the concept of grade have to relapse both on states and paths;

it is easy to have structures with an infinite number of paths satisfying a
given property (e.g., F q), so the concept of grade becomes unuseful.

w0
p

// w1
q

// w2
pff gg w0 // w1 // w2 // w0/w2 // w1/w0/w2 // . . .

We solve this problem using the concepts of minimality and conservativeness.
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Syntax and Semantics

Syntax of GCTL* and GCTL

Definition

GCTL* state (ϕ) and path (ψ) formulas are built inductively as follows:

1 ϕ ::= p | ¬ϕ | ϕ∧ϕ | ϕ∨ϕ | E≥gψ | A<gψ,

2 ψ ::= ϕ | ¬ψ | ψ∧ψ | ψ∨ψ | X ψ | X̃ ψ | ψ U ψ | ψ R ψ.

The simpler class of GCTL formulas is obtained by forcing each temporal
operator, occurring in a formula, to be coupled with a path quantifier.

Since our semantics is defined on finite paths, the next-time operator X is no
more the dual of itself, hence we have in the syntax both X and its dual X̃.

For g = 1, we may write Eψ and Aψ instead of E≥gψ and A<gψ.
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Syntax and Semantics

Informal meaning of E≥g and A<g

Definition

GCTL* state (ϕ) and path (ψ) formulas are built inductively as follows:

1 ϕ ::= p | ¬ϕ | ϕ∧ϕ | ϕ∨ϕ | E≥gψ | A<gψ,

2 ψ ::= ϕ | ¬ψ | ψ∧ψ | ψ∨ψ | X ψ | X̃ ψ | ψ U ψ | ψ R ψ.

The simpler class of GCTL formulas is obtained by forcing each temporal
operator, occurring in a formula, to be coupled with a path quantifier.

Informally, the graded quantifiers E≥gψ and A<gψ can be read as

E≥gψ: there exist at least g paths that satisfy ψ,

A<gψ: all but less than g paths satisfy ψ.

However, the domain on which the quantifiers range is not the class of all
infinite paths, but that containing all finite, minimal, and conservative paths.

Alessandro Bianco, Fabio Mogavero, Aniello Murano Universitá degli Studi di Napoli "Federico II"

Graded Computation Tree Logic (GCTL)



Preface Graded Computation Tree Logic Partitioning Alternating Tree Automata Conclusion References

Syntax and Semantics

Kripke structures, paths, order, and minimality

Definition

A Kripke structure (KRIPKE, for short) is a tuple K = 〈AP,W,R,L〉 where:

1 AP: finite non-empty set of atomic propositions;

2 W: non-empty set of worlds;

3 R ⊆W×W: transition relation;

4 L : W 7→ 2AP: labeling function.

A path π of a KRIPKE K is a finite sequence of states compatible with the
transition relation R of K .
A path π′ is a subpath of π, formally π′ 4 π, iff the first is a prefix of the latter.
For a set of paths P, we say that π is minimal in P iff, for all π′ ∈ P, it holds that
(i) π4 π′ or (ii) π′ 64 π.
By min(P) we denote the antichain (i.e., the set of minimal paths) of P w.r.t. 4.
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Syntax and Semantics

Semantics of GCTL*

Definition

Given a KRIPKE K = 〈AP,W,R,L〉, a world w ∈W, and a GCTL* path
formula ψ, it holds that:

1 K ,w |= E≥gψ iff |min(PA(K ,w ,ψ))| ≥ g;

2 K ,w |= A<gψ iff |min(P(K ,w)\PE (K ,w ,ψ))|< g;

where P(K ,w) is the set of finite paths of K starting in w and PA(K ,w ,ψ)
(resp., PE (K ,w ,ψ)) is the set of those paths that are (resp., non)
conservative w.r.t. ψ (resp., ¬ψ).

π∈ P(K ,w) is conservative w.r.t. ψ iff, for all π′ ∈ P(K ,w), it holds that π4 π′

implies K ,π,0 |= ψ, i.e., all paths extending π satisfy ψ.

PA(K ,w ,ψ) = P(K ,w)\PE (K ,w ,¬ψ).

¬E≥gψ≡ A<g¬ψ.
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Syntax and Semantics

Minimality and conservativeness

Example (Minimality for F p)

PA(K ,w0,F p) = P(K ,w0),

min(PA(K ,w0,F p)) = {w0}.
K ,w0 |= E≥1F p,
K ,w0 6|= E≥2F p.

P(K ,w0) = {w0 · (w∗1 + w∗2 + w∗3 )},
w0
p

����� ��===
))RRRRRRRRRR

w1
p77 K w2

p gg
w3
p gg

Example (Conservativeness for G p)

PA(K ,w0,G p) = {w0 · (w+
2 + w+

3 )},
min(PA(K ,w0,G p)) = {w0 · (w2 + w3)}.
K ,w0 |= E≥2G p,
K ,w0 6|= E≥3G p.

P(K ,w0) = {w0 · (w∗1 + w∗2 + w∗3 )},
w0
p

����� ��===
))RRRRRRRRRR

w188 K w2
p gg

w3
p gg
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Properties

Counting nodes on trees

5 = 1 + (2 + 2)
{w6,w7,w8,w9,w10}︸ ︷︷ ︸ = {w6}︸︷︷ ︸ ∪ ({w7,w8}︸ ︷︷ ︸ ∪ {w9,w10}︸ ︷︷ ︸)

w0 w2 ︸︷︷︸ w3 ︸︷︷︸ w4

h1 = 3 h2 = 2

T ,w0 |= E≥5Fp {w6,w7,w8,w9,w10}.
T ,w0 |= E≥3X E≥1F p {w2,w3,w4},
T ,w0 |= E≥2X E≥2F p {w3,w4}.
T ,w0 |=

∧5
i=1 E≥hi X E≥iF p.

hi = j means that there are j succes-
sors of w0 from which i paths satisfy-
ing F p start (h3 = h4 = h5 = 0).

T

w0

sshhhhhhhhhhh
vvlllllll
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w2
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w3
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w6
p
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p
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w10
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Properties

One-step unfolding (I)

We want to prove a one-step unfolding property for E≥gX ψ.

Decompose g into all possible integer partitions:

g = (1 + . . .+ 1)︸ ︷︷ ︸ + (2 + . . .+ 2)︸ ︷︷ ︸ + . . . + g︸︷︷︸
g = 1∗p1 + 2∗p2 + . . . + g ∗pg

Sum all elements in the following way: hi = ∑
g
j=i pj .

Let CP(g) be the set of all such finite sequences {hi}i .

Then, we have that E≥gX ψ≡
∨
{hi}i∈CP(g)

∧g
i=1 E≥hi X E≥iψ.
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Properties

One-step unfolding (II)

The following properties hold, where ϕ, ϕ′, and ψ are, respectively, two state
and a path formula:

1 E≥g(ϕ∧ψ)≡ ϕ∧E≥gψ;

2 E≥g(ϕ∨ψ)≡

{
ϕ∨E≥gψ, if g = 1;

¬ϕ∧E≥gψ, otherwise;

3 ϕ U ϕ′ ≡ ϕ′∨ (ϕ∧X (ϕ U ϕ′)).

E≥gϕ U ϕ′ ≡

{
ϕ′∨ (ϕ∧EX E(ϕ U ϕ′)), if g = 1;

¬ϕ′∧ϕ∧
∨
{hi}i∈CP(g)

∧g
i=1 E≥hi X E≥i (ϕ U ϕ′), otherwise.

Using this property, we are able to reduce GCTL to the GRADED µ-CALCULUS

with an exponential blow-up (since |CP(g)|= O(2
√

g)).
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Properties

Succinctness

Consider the property “in a tree, there exist at least g grandchildren of the root
labeled with p, while all other nodes are not”.

It is possible to express such a property with the following GCTL formulas of
length linear in g: ϕ = (E≥gF p)∧ (¬p)∧ (AX¬p)∧ (AX AX AX AG¬p).

w0

ssggggggggggggg
uukkkkkkkk

�� ))SSSSSSSS

w1

��

w2

��
w3

||zzz ��
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||zzz ��
w5

��

w6
p

��

w7
p

��

w8
p

��

w9
p

��

w10
p

��
w11 w12 w13 w14 w15 w16

However, each GRADED µ-CALCULUS formulas equivalent to ϕ has to have an
exponential size in the degree g.
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Properties

Elementary model properties

GCTL*, as CTL*,

is invariant under unwinding and partial unwinding,

has the tree and finite model property.

However,

it is not invariant under bisimulation,

it is more expressive than CTL*.

All the above results also hold for GCTL.
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Structure

Introduction to PATA

Partitioning alternating tree automata (PATA, for short) are symmetric au-
tomata running on infinite trees.

They are a generalization of alternating tree automata in such a way that the
automaton can send copies of itself to a given number n of paths starting from
the current node of the tree in input.

The run execution of PATA embed the one-step unfolding property.

Let Dε
b = {♦,�}×Nb∪{ε} be the set of abstract directions. Then, Dε

b×Q is
the set of moves that are allowed for a PATA, where Q is the set of states.

(ε,q): change the state to q without changing the node of the input tree;

((♦,g),q): there exists a set of successors of the current node in the
input tree to which the state q is sent, with all degree summing up to g;

((�,g),q): dual of ((♦,g),q).
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Structure

Formal definition of PABT

Definition

A partitioning alternating Büchi tree automaton (PABT, for short) is a tuple
A = 〈Q,Σ,b,δ,q0,b0,F〉 where:

1 Q: finite non-empty set of states;

2 Σ: finite non-empty set of labels;

3 b ∈ N: is a counting branching bound;

4 δ : Q×Nb×Σ 7→ B+(Dε
b×Q) is a transition function;

5 q0 ∈ Q: initial state;

6 b0 ∈ N: initial branching degree;

7 F ⊆ Q×Nb: Büchi acceptance condition.
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Structure

Run of a PABT (I)

A run of a PABT is a (T ×Q×Nb)-labeled tree that is coherenth with the delta
transition of the automaton, where T is the domain of the input tree T .

Example

1 δ(q,g,σ) = t, if g = 1 and
σ = {p};

2 δ(q,g,σ) = ((♦,g),q),
otherwise.

This automaton recognize all and
only the trees having at least 5 paths
reaching a node labeled with p.

A = 〈{q},{ /0,{p}},5,δ,q,5, /0〉
T

w0
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Structure

Run of a PABT (II)

A = 〈{q},{ /0,{p}},5,δ,q,5, /0〉

1 δ(q,g,σ) = t, if g = 1 and
σ = {p};

2 δ(q,g,σ) = ((♦,g),q),
otherwise.

T

w0

sshhhhhhhhhhh
vvlllllll
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Emptiness

Reduction to NBT

To evaluate the emptiness of a PABT, we first reduce it to an asymmetric non-
deterministic tree automata and then we calculate the emptiness of the latter.

For the reduction we use an extension of the Miyano-Hayashi technique for
tree automata. To do this, we have to face to two problems:

PABT allows the use of ε-moves;

there is no bound on the number of direction that a PABT can use.

The first problem is solved allocating in the NBT an apposite direction that
collects all states of the PABT sent through an ε-move.

The second one is solved proving a bounded-width model property for PABT.

The emptiness for PABT is EXPTIME-COMPLETE.
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Emptiness

Satisfiability of GCTL

The reduction of GCTL satisfiability to the emptiness of PABT is based on a
variation of the classical one between CTL and ABT.

The set of states is the extended Fisher-Ladner closure of the formula.

The delta transition of the automaton is a transposition of the one-step unfold-
ing properties of “until” and “release”.

δ(〈〈ϕ1U ϕ2〉〉,1,σ) = (ε,ϕ2)∨ ((ε,ϕ1)∧ ((♦,1),〈〈ϕ1U ϕ2〉〉)).

δ(〈〈ϕ1U ϕ2〉〉,g,σ) = (ε,¬ϕ2)∧ (ε,ϕ1)∧ ((♦,g),〈〈ϕ1U ϕ2〉〉), g > 1.

The satisfiability for GCTL is EXPTIME-COMPLETE.
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Conclusion

In this work...

we introduced GCTL*, i.e., CTL* augmented with Graded Quantifiers,

we study some elementary model-theoretic properties of this logic:
one-step unfolding,
expressiveness,
succinctness,
tree and finite model property,
reduction to GRADED µ-CALCULUS,

we introduce the Partitioning Alternating Tree Automata as a
generalization of graded alternating tree automata and study its
emptiness problem,

finally, we show the decidability of satisfiability for GCTL using a
reduction to the emptiness problem of PABT.
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